Ethnobotanical survey of medicinal plants used in the traditional treatment of viral infections in Jos, Plateau state, Nigeria

T.L. OHEMU¹*, A. AGUNU², P.N. OLOTU¹, U. AJIMA³, D.G. DAFAM¹, J.J. AZILA⁴

¹Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Jos, Nigeria
²Department of Pharmacognosy and Drug development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University Zaria, Nigeria
³Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, Nigeria
⁴Department of Forestry Technology, Federal College of Forestry Jos, Nigeria

Abstract: An ethnobotanical survey was conducted covering the three Jos North, Jos South and Jos East local government areas that makeup Jos in Plateau State - Nigeria, on plants used in treatment of viral infections through direct interview of Traditional Medicine Practitioners, Herbalist, Herb sellers and some indigenes/residents, using structured questionnaire supported with tape recorder and digital camera. The viral infections include common cold, measles, chickenpox, rabies, bird flu, hepatitis and HIV. The study was aimed at collection and documentation of medicinal plants used in the treatment of viral infections, within Jos. A total of 64 medicinal plants species, represented by 62 genera from 39 families were obtained from the ethnobotanical survey. The recipes for the treatment of the viral infections were also reported. The stem bark was the most commonly used plant used part in the treatment of viral infection with estimated value of 23.6%, followed by leaves (20.8%). Other plant parts used include roots, flower, fruits, rhizomes, seeds and in some cases the whole plant. The present findings, has revealed and documented medicinal plants used in treatment of viral infections in Jos, Plateau state, Nigeria for the first time. This information will be beneficial in public health, research and providing lead to plants that can be useful in antiviral drug discovery.

Keywords: anti-viral; ethnobotanical survey; medicinal plants; Nigeria; traditional medicine.

Introduction

Survey and documentation of a country’s or community’s natural resources is an important prerequisite for proper utilization of its raw materials. Full knowledge of various plants is necessary, so as to enhance proper utilization (Choudhary et al., 2008). Viral infection is one of the world’s most transmissible diseases; this is because it is almost always followed by a secondary bacterial infection. However available antiviral agents and vaccines have shown good results (WHO, 1983). The high cost of available antiviral drugs and their toxic side effects, viral resistance coupled with viral latency and conflicting efficacy in recurrent infection in immunocompromised patients has made viral disease a major and continuous public health burden (Ngono Ngare et al., 2011). There is the need for discovery of new antiviral compounds from plants that are safe, effective, which overcomes resistance and is also less toxic (Ngono Ngare et al., 2011). Recent studies showing antiviral potential of plant extract against viral strains resistant to conventional antiviral agents, has challenged modern drug discovery practices, and stimulated renewed interest in the exploration of medicinal plants with antiviral constituents (Mukhtar et al., 2008). Indigenous people have long history and expertise in the use of medicinal plants, but information on these plants and their uses is mainly passed from one generation to the other orally and even to date is poorly documented (Gurib-Fakim, 2006). The lack of an organized documentation for medicinal plant knowledge may also contribute to the loss of medicinal plant knowledge, particularly for plants that are neglected or non-preferred

*Corresponding author: (E-mail) tayogb17 <@> yahoo.co.uk
© 2014 Copyright by the Authors, licensee Open Access Science Research Publisher.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) License (http://creativecommons.org/licenses/by-nc-nd/3.0)
(Musa et al., 2011). Like every communities in the developing nations, the people of Jos in Plateau state, Nigeria depend on medicinal plants to meet their domestic and health needs. Majority of rural communities depend on traditional medicine, while most urban settlements depend mainly on orthodox medicine probably due to civilization. There is also the problem of holding information on use of plants as secrets due to distrust of researchers by traditional medicines practitioners because of previous bad experiences, and the desire to pass down information to offspring and/or, family members alone (Sofowora, 2008), and avoidance of competition in the practice. Eventually these people get older and dies, resulting into lost of vital information. The present study is aimed at collection and documentation of medicinal plants used in the treatment of viral infections within Jos, Plateau State, Nigeria, that can serve as a starting point for discovery of new antiviral agent.

Methods and materials

Study area

The study areas consist of Jos North, Jos South and Jos East Local government areas of Plateau state Nigeria. The areas consist of residents that are civil servants, farmers and traders. The area is a plateau that lies between latitudes 8° 22’ and 10° 24’ North and longitudes 8° 32’ and 10° 38’ East. Thus, Plateau State which derives its name from the Jos Plateau is located right in the centre of Nigeria-North central zone. The Jos – Plateau is the Upper part, and the Northern highland area of Plateau State, with a near temperate type. Weather conditions are warm during the rainy season (April-October) and cold during the Harmattan period (December-February). The mean annual temperatures in the state range between 20° and 25° centigrade, while the mean annual rainfall figures range from 131.75cm in the Northern part to 146cm in the Southern part.

Collection and Documentation of information on medicinal plants

The sample population comprises mainly of Traditional Medicine practitioner or Traditional healers and herb sellers, a few individuals with claims of medicinal plant knowledge according to the methods of Sofowora (2008). At least 10 individual was the target per LGAs. The sam-

Figure 1: Map of Plateau, State showing study Areas [Source: Geographic Information Systems (GIS) Laboratory, Department of Geography and Planning, University of Jos (2011)]
Int. J. Med. Arom. Plants

Ethnobotanical survey of plants used in viral infections in Jos, Nigeria

Ohemu et al.

http://www.openaccessscience.com

ijmap@openaccessscience.com

pling technique employed for this survey research was snowball sampling or referral sampling. A list of the common viral diseases was made, and enquiry was made of their treatment. These viral infections include common cold, measles, chickenpox, rabies, bird flu, hepatitis and HIV/AIDS respectively. The data for this study were obtained by direct interview with the respondents from September 2011 to March 2012. Informed consent was obtained orally from each of the respondent, before an interview. Since most of the respondents were not educated, oral interview was adopted to obtain the relevant ethnomedical data. Each respondent was visited two to three times in order to verify the authenticity of the data obtained, and to gather additional information not mentioned during a previous visit. Any discrepancy between information obtained at different visit on a particular ailment and plant used in its treatment, makes the information unreliable and hence, rejected.

Plant collection, Identification and Authentication

The plant species mentioned during the interview were collected by the respondent or the person who normally prepares the remedies, so as to avoid collection of the wrong plant (Sofo-wora, 2008). Most of the plants were collected fresh, photographs of collected plant species were also made, so as to enhance their identification. The plants species obtained from the survey were identified using keys and description given in the Flora of west Tropical Africa (Hutchison and Dalziel, 1963) and the “Woody Plant of Ghana” (Irvine, 1961) at College of Forestry, Herbarium Unit, Jos, by Mr Azila and Dr Jemilat Ibrahim of the herbarium unit at the National Institute of Pharmaceutical Research and Development (NIPRD), Abuja. The identity of the plant was authenticated at the herbarium unit in the Department of Biological Sciences, Ahmadu Bello University, Zaria, Nigeria by the Taxonomist of the unit. Some were also authenticated at the Forestry herbarium Ibadan. Voucher numbers were obtained for each specimen.

Data analysis

The data gathered during the ethnobotanical survey were analyzed by extracting information from data available, so as to give a summary description of the subject. Descriptive statistical tools such as tables and multiple bar charts were used.

Results

Medicinal plants used in the treatment of viral infections in Jos, Plateau State

A total of 64 medicinal plants species, represented by 62 genera were obtained from 39 families. Table 1 gives a concise information on the medicinal plant species, their families, plant part used, medicinal use and there vernacular names in Hausa, Igbo, Yoruba and others.

<table>
<thead>
<tr>
<th>Family</th>
<th>Scientific Name</th>
<th>Local Name</th>
<th>Plant Part Used</th>
<th>Form of preparation</th>
<th>Mode of administration</th>
<th>Voucher Number</th>
<th>Medicinal Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agavaceae</td>
<td>Sanseveria liberica</td>
<td>Mooda (H)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal and external</td>
<td>ABU 1821</td>
<td>Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Geromes Babroy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Aerva lanata (L.) Juss. ex Schult.</td>
<td>Efun (Y)</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 70736</td>
<td>Common cold</td>
</tr>
<tr>
<td>Amaryllidaceae</td>
<td>Crinum giganteum Andr.</td>
<td>Gadaali (H)</td>
<td>Whole plant</td>
<td>Infusion</td>
<td>Internal</td>
<td>ABU 1408</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Magnifera indica Linn.</td>
<td>Mangoro (H)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 1944</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Annonaceae</td>
<td>Annona senegalensis Pees.</td>
<td>Gwanda daji (H)</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 90012</td>
<td>Measles</td>
</tr>
<tr>
<td></td>
<td>Xylopia aethiopica (Dun.)A. Rich.</td>
<td>Eruje (Y)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>FHI 108075</td>
<td>Hepatitis, HIV</td>
</tr>
<tr>
<td></td>
<td>Enantia chloranta</td>
<td>Awopa(Y)</td>
<td>Stem Bark</td>
<td>Decoction and powder</td>
<td>Internal and external</td>
<td>FHI 101821</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Apocyanaceae</td>
<td>Lantothia owarienses P. Beauv.</td>
<td>Ciwoop (H)Ree (B)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 1225</td>
<td>Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Alostia boonei de Wild Carissa edulis (Forsk.) Vahl.</td>
<td>Awun (Ahun) (Y)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>FHI 103096</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Vernonia amygdalina Del.</td>
<td>Shawakaa(H)</td>
<td>Leaves</td>
<td>Maceration</td>
<td>Internal and external</td>
<td>ABU 595</td>
<td>Chickenpox Hepatitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rabies Measles</td>
</tr>
</tbody>
</table>

Some were also authenticated at the Forestry herbarium Ibadan. Voucher numbers were obtained for each specimen.
Ethnobotanical survey of plants used in viral infections in Jos, Nigeria

Boraginaceae
Heliotropium ovalifolium Forssk.
Shaunikasani (H)
Root
Powder
Internal
ABU 2037
HIV

Burseraceae
Boswellia dalzielli Hutch.
Ararabi (H)
Leaves and Stem bark
Decoction and powdered
Internal and external
ABU 1314
Rabies
Chickenpox
Hepatitis
HIV

Caesalpiniae
Pilosigma thomningii (Schum.)
Kargo (H)
Leaves and fruits
Decoction
Internal
ABU 1132
Measles

Cassia singuena (Del.) Lock.
Runfu (H)
Flowery tops
Decoction and powder
Internal and external
ABU 6855
Measles
Hepatitis
Chickenpox
Hepatitis

Deuterium microcarpum (Guill and Sperr.)
Tawra (H)
Stem Bark
Decoction
Internal
ABU 551

Caricaceae
Carica papaya Linn.
gwanda (H)
Leaves
Decoction
Internal and external
ABU 005
Measles

Chenopodiaceae
Chenopodium ambrosiodes kwalinisan (B)
Whole plant
Cold infusion
Internal and external
ABU 1921
Measles

Cochlospermae
Cochlospermum planchoni Hook.f.ex.Planch
Rawaya (H)
Root
Decoction
Internal
ABU 900011
Hepatitis
HIV

Combretiae
Anogeissus leiocarpus (DC.) Guill. & Perr.
Marke (H)
Stem Bark and Decoction leaves
Internal
ABU 900389
Common cold

Terminalia Avicennoides (Guill. & Perr. Fl. Seneg. Tent.)
Baushe (H)
Stem Bark
Decoction
Internal
ABU 900309
Common cold

Gnetaceae
Gnetum senegaleensis J.F.Gmel
Sabara (H)
Leaves
Decoction
Internal and external
ABU 900165
Chickenpox

Curcubitaceae
Cucumis metuliferus E. Mey
Buurar-zaaikii (H)
Fruits
Maceration
Internal
ABU 3232
Bird flu

Adenanthes breviflorus Benth.
Tagiri (Y)
Fruit
Maceration
Internal
FHI 107945
Measles

Ebenaceae
Diospyros mespiliformis Hochst.ex.A.DC.
Kanya (H)
Bark
Decoction
Internal
ABU 901431
HIV

Euphorbiaceae
Jatropha curcas Linn.
Biydazougu (H)
Leaves and root
Decoction or powdered
Internal
ABU 1911
Hepatitis
HIV

Fabaceae
Manihot esculenta Linn.
Rogo (H)
Leaves
Decoction
Internal
ABU 2347
Measles
Measles
Chickenpox
HIV

Dialium guineense Willd.
Tsamiyfr illagandi (H)
Whole plant
Decoction and powdered
Internal and external
ABU 3792
Measles

Erythrina senegalensis DC
Minjiriya (H)
Bark
Decoction
Internal
ABU 7721
Hepatitis
HIV

Abrus precatorius L.
Idon zakara (H)
Whole plant/ leaves
Decoction
Internal
ABU 1496
Common cold

Tamarindus indica L
Tsamiya (H)
Leaves
Decoction
Internal
ABU 900265
Measles

Acacia sieberiana DC.
Farar kaya (H)
Root (H)
Decoction
Internal
ABU 90032
Hepatitis

Garcinia kola Heckel
Orogbo (Y)
Fruit/nut
Maceration
Internal
ABU 1614
Measles
Measles

Ocimum gratissimum Linn.
Effirin (Y)
Leaves
Maceration
Internal and external
ABU 661
Measles

Liliaceae
Allium sativum Linn.
Tafamuwa (H)
Bulb
Decoction
Internal
ABU 423
Common cold

Talinanthes dodoneifolius (DC.) Danser.
Kauchi (H)
Stem bark
Decoction
Internal
ABU 6517
Hepatitis

Loranthaceae
Hibiscus rostitiatus Guill. & Perr.
Dakwan (B)
maratum (A)
Whole plant
Powder and decoction
Internal
ABU 1774
Rabies
Hepatitis
HIV

Meliaceae
Khaya grandifolia Oganwo (Y)
Stem Bark
Decoction
Internal and external
ABU 900181
Chickenpox
Rabies
Hepatitis
HIV

Mimosaceae
Acdaravichta Indica A. Juss.
Parkia biglobosa (Jacq.) R Br.
Dogan yaro (H)
Stem Bark, leaves
Decoction and powder
Internal
ABU 900151
Hepatitis
Hepatitis
Chickenpox
Hepatitis
HIV

Moraceae
Ficus thomningii Blume
Chediya(H)
Stem Bark
Decoction
Internal
ABU 651
HIV

Ficus vallis choade Dehile
Ogunro (Y)
Stem Bark
Decoction
Internal
ABU 547
HIV

Morina
Ficus sycomorus L.
Baore (H)
Root
Decoction
Internal
ABU 1942
Hepatitis

Moringaceae
Moringa oleifera Lam.
Zogallagandi (H)
Root
Decoction
Internal
ABU 571
Hepatitis

Myrtaceae
Syzgium guineense Wall.
Malmo (H)
Root
Decoction
Internal
ABU 900295
Hepatitis

Psidium guianum L.
Guaba (H)
Leaves
Decoction
Internal and external
ABU 2846
Measles

Oliveaceae
Ximenia americana L.
Tsaada (H)
Root
Decoction
Internal
ABU 1612
Measles

Ochnaceae
Spondias amara L.
Jan magani (H)
Roots
Decoction
Internal
ABU 900121
Measles

Poaceae
Sorgum guineense Staph.
Doro (H) okababa (Y)
Seeds, stem
Decoction
Internal
ABU 8501
Measles
Hepatitis
Chickenpox
HIV

Polygalaceae
Securidaca longepundulata Fers.
Sanya (H)
Leaves
Whole plant
Powder and decoction
Internal
ABU 900141
Common cold
Measles
Hepatitis
HIV

Rubiaceae
Pavetta cissipes K. Schum.
Rubatari (H)
Leaves
Decoction
Internal
ABU 904
Common cold

http://www.openaccessscience.com
ijmap@openaccessscience.com
Ethnobotanical survey of plants used in viral infections in Jos, Nigeria

<table>
<thead>
<tr>
<th>Plant Family</th>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Part Used</th>
<th>Preparations</th>
<th>Application</th>
<th>Code</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutaceae</td>
<td>Mitracarpus scaber</td>
<td>Googamassu (H)</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 70701</td>
<td>Measles</td>
</tr>
<tr>
<td></td>
<td>Nauclea latifolia Sm.</td>
<td>Egbesi (Y)</td>
<td>Stem bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 005</td>
<td>Chickenpox, Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Spermocoe verticellata Oldenlandia goens DC</td>
<td>Karyangarma (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 672</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raatsa-hanji (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal and external</td>
<td>ABU 9558</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td>Citrus aurantifolia</td>
<td>Lemun sami (H)</td>
<td>Leaves</td>
<td>Decoction and powder</td>
<td>Internal</td>
<td>ABU 1440</td>
<td>Measles, Hepatitis</td>
</tr>
<tr>
<td>Sapotaceae</td>
<td>Nauclea latifolia Sm.</td>
<td>Egbesi (Y)</td>
<td>Stem bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 005</td>
<td>Chickenpox, Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Spermocoe verticellata Oldenlandia goens DC</td>
<td>Karyangarma (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 672</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raatsa-hanji (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal and external</td>
<td>ABU 9558</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td>Spermocoe verticellata Oldenlandia goens DC</td>
<td>Karyangarma (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 672</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raatsa-hanji (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal and external</td>
<td>ABU 9558</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td>Citrus aurantifolia</td>
<td>Lemun sami (H)</td>
<td>Leaves</td>
<td>Decoction and powder</td>
<td>Internal</td>
<td>ABU 1440</td>
<td>Measles, Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Spermocoe verticellata Oldenlandia goens DC</td>
<td>Karyangarma (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 672</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raatsa-hanji (H)</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>Internal and external</td>
<td>ABU 9558</td>
<td>Chickenpox</td>
</tr>
<tr>
<td></td>
<td>Citrus aurantifolia</td>
<td>Lemun sami (H)</td>
<td>Leaves</td>
<td>Decoction and powder</td>
<td>Internal</td>
<td>ABU 1440</td>
<td>Measles, Hepatitis</td>
</tr>
<tr>
<td>Scrofulariaceae</td>
<td>Striga hermontheca (Del.) Benth.</td>
<td>Kujiji (H)</td>
<td>Stem Bark</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 1058</td>
<td>Common cold</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Nicotiana tabacum L.</td>
<td>Guota kaji (H)</td>
<td>Fruits</td>
<td>Maceration</td>
<td>Internal</td>
<td>ABU 1664</td>
<td>Bird flu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taba (H)</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 1611</td>
<td>Chickenpox</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Vitex chrysocarpa Planch. & ex Benth.</td>
<td>Magani kaji (H)</td>
<td>Leaves</td>
<td>Maceration</td>
<td>Internal</td>
<td>ABU 1611</td>
<td>Chickenpox</td>
</tr>
<tr>
<td>Zingiberaceae</td>
<td>Zingiber officinale Rosco.</td>
<td>Chitta (H)</td>
<td>Rhizomes</td>
<td>Decoction</td>
<td>Internal</td>
<td>ABU 2261</td>
<td>Common cold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atale (Y)</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Internal</td>
<td>FHI 108004</td>
<td>Common cold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atare (Y)</td>
<td>Leaves, root</td>
<td>Decoction</td>
<td>Internal</td>
<td>FHI 108004</td>
<td>Common cold</td>
</tr>
<tr>
<td></td>
<td>Aframomum melegueta K. Schum.</td>
<td>Atare (Y)</td>
<td>Leaves, seeds</td>
<td>Decoction</td>
<td>Internal</td>
<td>FHI 108004</td>
<td>Common cold</td>
</tr>
</tbody>
</table>

Key: H: Hausa; Y: Yoruba; B: Berom; A: Anaguta

Distribution of informant’s age

The age distribution of informants showed that most of the informants encountered during the survey are within the age range 40-49 and 50-59. This is shown on Fig 2.

![Figure 2: Distribution of informant’s age.](image)

Medicinal plant parts used in treating viral infections

The various plant parts utilized are represented on shown on Table 2.

Table 2 above shows that stem bark was the most used part with estimated value of 23.6%, followed by leaves (20.8%) and roots (12.5%) respectively. Other parts are used, but not as frequent as the stem bark, leaves and roots.

<table>
<thead>
<tr>
<th>Part used</th>
<th>Frequency</th>
<th>% Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulb</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Flower</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Fruits</td>
<td>7</td>
<td>9.7</td>
</tr>
<tr>
<td>Leaves</td>
<td>15</td>
<td>20.8</td>
</tr>
<tr>
<td>Leaves, fruit</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Leaves, root</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Leaves, stem bark</td>
<td>3</td>
<td>4.2</td>
</tr>
<tr>
<td>Leaves, seeds</td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td>Leaves, whole plant</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Rhizome</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Root</td>
<td>9</td>
<td>12.5</td>
</tr>
<tr>
<td>Root, whole plant</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Seeds</td>
<td>2</td>
<td>2.8</td>
</tr>
<tr>
<td>Seed, root</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Stem bark</td>
<td>17</td>
<td>23.6</td>
</tr>
<tr>
<td>Whole plant</td>
<td>7</td>
<td>9.7</td>
</tr>
<tr>
<td>Total</td>
<td>72</td>
<td>100.0</td>
</tr>
</tbody>
</table>

![Figure 3: Sources of information.](image)

Sources of information

The sources of information in the study are Traditional Medicine Practitioners, Herbalist, Herb sellers, indigenes and residents. Herbalist and Traditional Medicine Practitioners were the major source of information, while the herb sellers, indigenes and residents gave less information as presented by Fig 3.
Table 3: List of Plants frequently mentioned in the treatment of a Particular Viral Infection by two or more informants.

<table>
<thead>
<tr>
<th>Viral Infection</th>
<th>Scientific Name of Plant</th>
<th>No. of Informants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common cold</td>
<td>Anogeisus leioparusat</td>
<td>8(50%)</td>
</tr>
<tr>
<td></td>
<td>Pavetta crissipes</td>
<td>7(44%)</td>
</tr>
<tr>
<td></td>
<td>Striga hermontheca</td>
<td>5(31%)</td>
</tr>
<tr>
<td></td>
<td>Allium sativum</td>
<td>4(25%)</td>
</tr>
<tr>
<td></td>
<td>Abrus precatorus</td>
<td>4(25%)</td>
</tr>
<tr>
<td></td>
<td>Vernonia amygdalina</td>
<td>2(13%)</td>
</tr>
<tr>
<td></td>
<td>Chennepodium amboosiodes</td>
<td>2(13%)</td>
</tr>
<tr>
<td></td>
<td>Manihot esculenta</td>
<td>2(13%)</td>
</tr>
<tr>
<td>Measles</td>
<td>Vernonia amygdalina</td>
<td>2(13%)</td>
</tr>
<tr>
<td></td>
<td>Cucumis metaliferas</td>
<td>3(19%)</td>
</tr>
<tr>
<td></td>
<td>Solanum nigrum</td>
<td>7(44%)</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>Jatropha curcas</td>
<td>2(13%)</td>
</tr>
<tr>
<td>Birdflu</td>
<td>Boswellia dalzielii</td>
<td>3(19%)</td>
</tr>
<tr>
<td></td>
<td>Enantia chlorantha</td>
<td>3(19%)</td>
</tr>
<tr>
<td>Rabies</td>
<td>Boswellia dalzielii</td>
<td>2(13%)</td>
</tr>
<tr>
<td></td>
<td>Moringa oleifera</td>
<td>4(25%)</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Jatropha curcas</td>
<td>2(13%)</td>
</tr>
<tr>
<td></td>
<td>Enantia chlorantha</td>
<td>3(19%)</td>
</tr>
<tr>
<td>HIV</td>
<td>Moringa oleifera</td>
<td>4(25%)</td>
</tr>
</tbody>
</table>

Table 3 above shows that some of the medicinal plants discovered during the survey are more popular in viral infection therapy than others. This confirms the authenticity of information gathered and also the importance of such plants. Hence, informant’s consensus revealed that, *Anogeisus leioparusat* used in the treatment of common cold is the most popular plant, cited by 8 informants (50%), followed by *Pavetta crissipes* and *Solanum nigrum* used in the treatment of common cold and bird flu respectively, mentioned by 7 informants (44%). The next plant is *Striga hermontheca* cited by 5 informants (31%). *Allium sativum* and *Abrus precatorus* used in the treatment of common cold and *Moringa oleifera* used to treat HIV are the next, mentioned by 4 informants (25%).

Discussion and Conclusion

Medicinal plants used in treating viral infection in Jos-Plateau state

In the ethno botanical survey conducted in Jos-Plateau, a number of 64 medicinal plants from 39 families and their uses in treating some common viral infections were reported as shown by table 1. This demonstrates the depth of the knowledge of the people of Jos-Plateau on medicinal plants and their uses. These plants were said to be effective in the treatment of the seven (7) common viral infections mentioned earlier. This study has shown that different areas in different part of the world demonstrate the existence of considerable amount of indigenous ethnomedical knowledge (Tesfaye and Zemede, 2009).

Recipes, dosage regimen and route of administration

Decoction and maceration are the most common mode of preparation. Oral route is the major route of administration, followed by a combination of both oral and external route of administration, depending on the type of viral infection been treated. This finding is in agreement with studies by Hunde et al, (2004) and Musa et al, (2011) which also revealed that oral ingestion is the most frequently used route of administration in traditional medicine.

Like most studies in ethno botany, it was observed during this study that the TMP's usually has no knowledge of the strength of their remedies, dosing depends on each practitioner (Tesfaye and Zemede, 2009). This lack of standardization and precision in dosage is seen as one of the main disadvantage of traditional medicine (Sofowora, 2008).

Distribution of informant’s age

The study revealed that most knowledge on herbal remedies is handled by members of the community between the age range of 40-49 and 50-59, as shown on Fig. 2. This indicates that there is a wide gap of ethnomedical knowledge between the elderly and the younger generation. The majority of the informants are middle aged and elders who said that they had learned about medicinal plants during their childhoods and the knowledge had been orally passed down from family members, particularly grandparents and parents. Most of the adults reported that they learned about medicinal plants when trailing with their parents or grandparents to gather remedies in the forest when they were young. This situation seems to be the same in many parts of the world (Musa et al., 2011, Bussmann and Sharon, 2006). Cultural changes as a result of westernization and modernization (Voeks and Leony, 2004) has contributed in...
making the younger generation undermine our traditional values (Giday et al., 2003). Since traditional medicine remains the most popular medicine in solving health problems in the developing world. It is important to publicize medicinal plant knowledge within the young generation to raise awareness of and appreciation for their traditional values and for the conservation and sustainable use of the plants as well as to keep the traditional medical knowledge left in their community alive.

Medicinal plants used in treating viral infection

Table 2 shows that stem bark was most commonly used part in the treatment of viral infection than other plant parts in the study area. This was followed by the use of leaves, roots, fruits, whole plant, while seeds, bulb, flower and rhizomes were least used. This is similar to a study by Murthy (2012), in which stem bark ranked highest part used, followed by leaves and then the other parts.

Sources of information

Figure 3 shows that Traditional Medicine Practitioners (TMP) and Herbalist gave the highest response, while herb sellers and indigenes/residents showed little response. This was due to availability and willingness of the TMPs and Herbalists to share their knowledge. Some of the herb sellers were resistant, while the residents and indigenes had little knowledge on traditional medicine.

Plants frequently mentioned in treatment of a particular viral infection by two or more informants

The frequently mentioned plants in the treatment of a particular viral infection are shown on Table 3. Sixteen (16) plants were identified and grouped according to the different viral infections. The fact that some of the plants are having similar uses in different LGAs surveyed indicates their pharmacological effectiveness (Oladumoye and Kehinde, 2011). It also confirms the authenticity of the information gathered during the study.

In conclusion, this ethnobotanical study has revealed that there is high knowledge and use of medicinal plants in Jos, plateau state. Through this study medicinal plant with the potential to treat or prevent viral infections were documented. The information from this study can serve as a guide for the discovery of new antiviral agents from plants.

Recommendation

There is need for ethnobotanical survey in every state of the nation on medicinal plants used in treatment of viral infection. In order to preserve knowledge on medicinal plants and to update existing information. Most of the medicinal plants used in plateau state are from the wild, there is need to encourage and enforce cultivation of medicinal plants, so as reduce exploitation of plants growing in the wild, otherwise, extinction of useful medicinal plants. Traditional medicine is relatively cheap, its raw materials are readily available, it is a potential source of new drugs and of course, a source of cheap starting products for the synthesis of known drugs. Hence, the sale and use of medicinal preparations should be encouraged and supported by the government. Since viral infection is one of the world most transmissible diseases, there is need for both private and public organizations to invest in researches that will lead discovery of new antiviral compounds that is safe, effective and less toxic, particularly from plants. The information on medicinal plants gathered during this study is based on claims by the TMP. Hence, researchers need to carry out investigations on these plants, so as to ascertain the claims.

Reference

Ethnobotanical survey of plants used in viral infections in Jos, Nigeria

